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Abstract A two-dimensional semi-infinite Josephson junction without damping is considered. 
11s interaction with an exlemal oscillating elecmmagnelic field in lhe form of a running wave 
with a phase velocity equal lo the Swihan velocity is investi@ed. The results obtained are based 
on an exact solution of lhe (Irl)-dimensional sinffiordon equation. depending on an arbilnry 
function. The boundary conditions on the interface ate provided by an extemal time-varying 
electric field consistent with the exact solution. Under these conditions, an electromagnetic 
smcture arises inside the junction, It is shown how lhe existence of this formation may be 
proved experimentally. A method for measuring lhe Swihm velocity is proposed. 

1. Introduction 

It is well known that when the size of a plane Josephson junction is much greater than 
the Josephson penetration depth A,, a macroscopic description becomes possible. Then the 
junction is considered as a solid body in which may exist a macroscopic magnetic field H 
and electric field E [1-4]. 

When the electric and magnetic fields E and H are sufficiently weak or the conditions 

eV < A IHI << Hm 0 << A / h  a >>CO, AL (1) 

are satisfied, then the electrodynamics of the Josephson junction is determined by the 
difference @ between the phases of the wavefunctions of the superconductors. In (I), V is 
the potential difference inside the junction, A is the energetic gap of the superconductors, h 
is Planck’s constant, H,, is the thermodynamic critical field of a massive superconductor, 
(0 is the correlation length, and 01 and w are the characteristic space period and frequency 
of the fields. 

We will consider only dimensionless variables as in [2]. 
Under the conditions ( I )  the phase difference @(xq y ,  t) inside the junction is determined 

(2) 

The phase velocity connected with the wave operator on the left-hand side of the sine.- 
Gordon equation (2) is the Swihart velocity CO [ 5 ] ,  which is a major characteristic of the 
Josephson junction [14 ] .  It is equal to unity in dimensionless variables. 

The electric and magnetic fields E and H, the Josephson junction current density j, 
and the potential difference V inside the junction are given by the equalities 

by the sin&ordon equation 
az#/axz + az@/ay2 - a2@/atz = sin#. 

E = (a@/ar)n H =TI  x v4 j, = ns in@ v = a@/at (3) 
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Fimre 1. A scheme of the Josephson junction: A- 
A’, superconductors; BB‘. pairs of electrodes. 

where n = unit vector along the z axis (see figure I). 
In [2] (see also [6 ] )  a one-dimensional, semi-infinite Josephson junction is considered 

( y  g 0). An external magnetic field HO is applied to the junction. The field is perpendicular 
to the y direction and it lies in the junction’s plane (see figure 1). 

When the value HO of the field satisfies the condition 
Ho < 2 (4) 

+ ( Y )  = 4tan-’[exp(y + YO)]. (5) 
The distribution of the magnitude H of the magnetic field corresponding to (5) inside the 
junction is given by the expression 

(6) 

then the distribution of  the phase difference q5 is given by the expression 

H ( Y )  = 2/cosh(y + YO). 

The parameter yo is determined by the boundary condition 
cosh yo = 2 / H 0 .  (7) 

The latter condition enables two values of yo to exist. The stable distribution of magnetic 
field corresponds to the value of yo at which the field H decays inside the junction. We 
will use that concept further in our considerations. 

Of course, the one-dimensional case with respect to y could be regarded as the two- 
dimensional one in the x y  plane, where the magnetic field HO is homogeneous with respect 
to the variable x .  Our investigation generalizes this physical situation, transforming it into 
a new one, where a non-homogeneity with respect to x exists. 

The aim of this paper is  the following. On the basis of a specific exact solution of the 
sineGordon equation (2), we will investigate the resonance properties of a two-dimensional 
semi-infinite Josephson junction with respect to a weak external electric field in the form of 
a running wave with a phase velocity equal to the Swihatt velocity. The external oscillating 
electric field is consistent with the exact solution. We will show that when such a field 
is applied along the junction’s border then an electromagnetic structure appeam inside. 
The StNCtUR moves with the Swihart velocity. One could say that the present investigation 
generalizes and moves along x (see figure 1) the homogeneous (with respect to x )  stationaty 
physical situation mentioned above and considered in [2] and [6]. 

The main features of the structure predicted are clarified. An experiment for verifying 
the existence of the structure is proposed. As a consequence, a resonance method for 
measuring the Swihart vdocity is proposed. Some considerations concerning the stability 
of the structure investigated are presented. 
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2. Setting the problem and investigating the electromagnetic structure 

We consider a Josephson junction situated in the half-plane y 6 0 of the plane xOy (see 
figure I) .  As in 11-41 we consider weak electromagnetic fields at small frequencies w and 
wavenumbers k; for example, OJ e 10"-10'2 Hz, k < 102-103 cm-'. 

It has been established [7] that equation (2) possesses the solution 

@ ( x ,  y, t )  = 4tan-I~ f (x  - t)eY]. (8) 

Here f (x  - 1 )  is an arbitrary function. The solution (8) describes a non-hear running wave 
moving along the direction x with a phase velocity equal to unity in dimensionless variables 
or equal to the Swihart velocity CO in physical variables. It may be seen from (3) and (8) 
that the function (8) describes some configuration of electric and magnetic fields as well as 
a superconducting Josephson current-density distribution inside the junction. 

We will investigate the conditions for the appearance of the structure mentioned above 
and its properties. 

From (3) and (8) we obtain for E, H and j ,  inside the junction the following: 

E, = o E ,  = o E, = -4fx/(e-Y + f'e,) ( 9 4  

H, = -4 f/(e-Y + f 'e,) H ,  = 4 fr/(e-Y + f 'e") H,  = 0 (9b) 

j x = O  j y = O  j z  = -4feY( 1 - f 2e2y)/(e-y + f 'ey)' (9c) 

where 

fx E af(x - t)/ax 

The full srcperconducting current I is 

After the substitution U E x - t we obtain from ( 9 4  

From (3) and (8) we have 

v = -4 fu/(e-Y + f'e,) 

where 

fE = df (u)ldu 

We shall consider the case when the fields (9a) and (9b) decay with lyl analogously to 
the already mentioned stable and stationary one-dimensional case [2,6]. So it may be said 
that we shall consider electromagnetic structures possessing Meissner-like properties. 

The quantities IHxI, lHYl and [E,I from (9) decrease with IyI when 

f2W b 1. (13) 



7484 A Grigorov et a1 

At the boundary y = 0 for the fields (9a) and (96) we obtain 

Exo = 0 E, = 0 Er0 = -4f,/(l+ f2) 

H,* = -4f/( 1 + fz) HH = 4f,/( 1 + fZ) Ha = 0. 

Let us consider the following ordinary differential equation for f ( u ) :  

- 4fu/ ( l+  f2) = M u )  

where h(u )  is an arbitrary function. The solution of equation (15) is 

where C is an arbitrary constant. 
From (14) and ( 1  6) we have 

Ex, = 0 E, = 0 E, = h(U) 

HI, = -2sin( - ; [ - h ( u ) d u + 2 C )  Hyo = -h(u) Ha = 0. 

From ( I  1)  and (16) it follows that 

For the voltage V ( x ,  y .  r) using (12) and (16) we obtain 

+ sin' ( - l: h(u)  du + C) ezY]-' 

It may be verified that the expressions (9) satisfy the Maxwell equations. If an electric 
field E in the form of (9a) exists inside the junction, it creates a magnetic field H and 
Josephson current density j ,  in the form of (96) and (9c). The electric field (9a) satisfies 
the boundary conditions (14a) and consequently, when an extemal electric field in the form 
(140) is applied along the boundary y = 0, it  is possible for an electromagnetic field in the 
form (9a) and (9b) to arise inside the junction. 

From (13) and (16) i t  follows that 

The value of the parameter C will be determined later. 
Now we will consider some particular cases for the function h(u). 

(i) Let h(u)  0. From (17) we obtain 

E ,  = O  E , = O  E ,  = 0 

Hxo = -2sin(2C) Hyo = 0 H ,  = 0. 
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These boundary conditions correspond to the one-dimensional case mentioned above [2, 61. 
(ii) There now follows an example of a function h(u) that is different from zero in a 

finite interval. From (17) we have 

lim Ezo = 0 lim Hyo = 0 
u-+i.m u+*m 

lim H - -2sin(2C) lim Hro = -2sin (- lI h(u)du + 2C). (22b) 
"+-m = a -  U" 

Let us impose on the function h(u)  the condition 
m 

h(u) du = 0. 

The boundary conditions (17) correspond to a junction to which an extemal constant 
magnetic field with components (21b) and an extemal electric field in the form (17a) 
along the boundary y = 0 are applied. For simplicity we regard the function 

u < o  
O < U < l  

3 < U. 

h(u) = 1:; l < u < 3  

Let C = 0. From (18) and (24) we obtain 

I = 12[cos(;) - I]. 

In this consideration the length 3 h ~  of the region where the function h(u) is non-zero is an 
arbitrarily chosen model value and does not concern the main features of the phenomenon. 

(iii) Now we shall consider an example of a periodic function h(u). Let us accept for 
f ( u )  a form slightly different from (16). i.e. 

f (u )= tan (  - a i " h ( u ) d u + C ) .  (26) 

From (20) we obtain a condition similar to (23): 

iT h(u)du = 0 

where T is the period of the function h(u). In this case C cannot be determined from 
the boundary conditions. We assume that a non-stationary but equilibrium configuration 
of electromagnetic field exists inside the junction. The value of the parameter C will 
be estimated by a minimization of the thermodynamic potential. Considering constant 
temperature we minimize the free energy per period T. The calculations will be performed 
when 

Ih(u)l << 1. (28) 

For the free energy F of the junction we have [Z] 
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From (8) and (29) we obtain for the free energy per period Fr 

(30) 

or 

Fr = j d r  [ih(u)/COS2 ( - $[ h(u)du + C) + 8shZ ( - $1' h(u)du + C)] du. 

(31) 

Let h(u) be the Function 

(32) 

Here n = 0, & I , .  . . ,O < E < I .  Using (32) and expanding the integrands in (31) into 
Taylor series keeping only the terms of the order of E, we obtain 

(33) 

U E (Zn, 2n + 11 
h(u) = 

FT = 8 - ~cos(ZC). 

Obviously FT is minimal when C = 0. The average value 
density per time period T is 

of the superconducting current 

j ,  = - (34) 
- l ' + r j z d t .  

T 

From ( 9 ~ ) .  (32) and (34) we obtain 
j ,  = 0. 
- 

(35) 
Hence the average superconducting current across the junction is zero. 

From these examples one can conclude that when the function h(u) is in the form of 
h(u) = -h( -u)  then the full current across the junction is zero. The more the function 
differs from such a form, the more the full current differs from zero. 

In figure 2 is presented an illustration of the distribution of the component E,  formed 
inside the junction when h(x - t )  = 0.2sin(x - t )  at t = 0. 
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3. A proposal for experimental verification 

The existence of the predicted electromagnetic structure may be verified experimentally. For 
this purpose an extemal alternating electric field in the form (17a) must be applied along the 
border y = 0 of the junction. The total current is then continuously increased in expectation 
that a non-zero resonance potential difference appears on the superconductors not far from 
the border y = 0. This will prove that the discussed structure exists. It is well known 
that the photolithographic technique [8] allows electrodes with a thickness of 1000 8, to be 
evaporated. Such electrodes could be suitable for the measurement of the resonance. They 
must be distributed on the surfaces of the superconductors in the y direction. When the 
function h(u) determining the external field satisfies the condition (ZO), then the potential 
difference V ( x ,  y, t )  and the total current I are given by (19) and (18). 

In practice, such an external electric field may be created in the following way. One 
has to situate the junction between pairs of electrodes set along the boundary (see figure 1). 
If we supply a voltage V ( x ,  t )  in the form of 

l’(x, t )  = H(x - t )  (36) 

across the corresponding pairs of electrodes, then an electric field in the form ( 1 7 ~ )  arises 
along the boundary. Such a voltage may be obtained using a suitable delay line connected 
with the pairs. The voltage inside the junction will be determined by (19) if the width of the 
electrodes and the distance between them are much smaller than the characteristic length 
over which the function H ( u )  changes. 

The discussion above suggests a method for measuring the Swihart velocity (see [9]) .  
There will be a resonance of the voltage inside the junction only when the phase velocity 
is equal to CO. So scanning the phase velocity value of the extemal voltage when changing 
the total current provided, one must seek for an inside voltage resonance. Then measuring 
the delay r after which a value V ,  of the extemal voltage appears on two pairs of electrodes 
situated at a distance A from one another, one can find the Swihart velocity CO as 

CO = h / r .  (37) 

As a model of a two-dimensional semi-infinite Josephson junction one could accept 
a construction consisting of two cylindrical coaxial superconductors (see figure 3). The 
external electric field runs around the dielectric barrier. 

Figure 3. A scheme of a cylindrical Josephson junction: A d ‘ ,  
superconductors; B-E’, pairs of elecuodes. 
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4. Discussion 

The investigation presented above points out that the Josephson junction possesses selective 
properties with respect to external electromagnetic fields in the form of a running wave with 
a phase velocity equal to the Swihart velocity. 

The solution (8) originates from the solution (4). The solution (4) describes a stable 
distribution of the magnetic field. So there are grounds to expect that the structure predicted 
above is also a stable one. 

Since the Swihart velocity is critical in our considerations, the electromagnetic structure 
is not of a type of fluxons. 

The Swihart velocity was introduced for the first time [5] in the case of the absence 
of a Josephson current. Then the term sin$ in the right-hand side of the sineGordon 
equation (2)  is absent too. We call the value of the Swihart velocirj thus calculated a 
linearly determined one. One could assume that when a Josephson current is available. then 
the value of the Swihart velocity differs from the linearly determined one. 

The investigation presented above is to be understood in a more general sense. It points 
out the existence of a voltage resonance inside the junction when a fixed total current is 
provided and an electromagnetic field in the form of a running wave with a specific phase 
velocity is applied. So we assume that the real, non-linearly determined Swihari velocity is 
to be measured by the method proposed above. 

5. Conclusion 

Another solution of equation (15) is the function u(u)  = -l/f (U). where f ( U )  is determined 
by (16). The structure described by this solution is physically equivalent to the one already 
considered but the directions of the components Hx and j ,  are opposite. 

The Josephson junction consisting of two superconducting layers with a thin barrier 
between them possesses selective properties with respect to a weak external electromagnetic 
field in the form of a running wave with a phase velocity equal to the Swihart velocity. An 
expression of this selectivity is the existence of the formation of an electromagnetic field 
inside the junction when a proper total current is provided. This formation is in the form 
of a running wave with the same velocity. A potential difference exists inside the junction. 
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